

Stanford Synchrotron Radiation Laboratory

		Tamera dynamotro	Triadiation Laboratory
LCLS Physics			
Requirements Document #	1.3-002	Linac	Revision 2
T 1 T	: D		
<u>L1-1.</u>	anac Rec	<u>quirements</u>	
) [] []	10/00
Paul Emma	- FC	W/Com	6/8/05
Author	/	Signature	Date
		Λ	(6)
Eric Bong	- En	0/19	6/8/03
Injector/Linac WBS Manager		Signature	Date
	(1)	1	(///
Paul Emma	ta	W.C.	6/8/05
System Physicist		Signature	Date
		00111	1/2/2
David Schultz	10	Samp	6/8/00
E-Beam Systems Manager		Signature	Date
			/ /
Darren Marsh	11/	andral	6/8/05
Quality Assurance Manager	V	Signature	Date
	0	11 0	1.)
John Galayda	18h,	Laland	4/8/05
Project Director		Signature	Date

Brief Summary:

This specification summarizes physics requirements for the first linac section in the LCLS (L1-Linac).

Keywords:

Linac, RF

Key WBS#'s:

1.3

LCLS L1-Linac Requirements

The L1-linac (L1) is composed of the three existing SLAC linac sections 21-1b, 21-1c, and 21-1d, as shown in Figure 1 below. The requirements of this linac section are to accelerate a single 1-nC, 1-mm long electron bunch, at a repetition rate of 120 Hz, from 135 MeV to 250 MeV with the existing S-band (2.856 GHz) RF. This must be accomplished at an off-crest RF phase (-25° with respect to accelerating crest) in order to energy-chirp the bunch in preparation for bunch compression in the BC1 chicane, just beyond L1. In addition, the transverse slice-emittance of the electron bunch must be well preserved to a level of <4% growth in both planes.

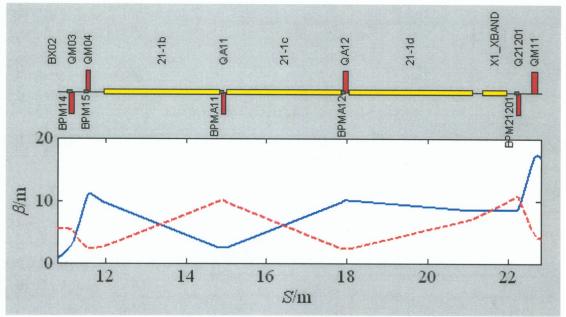


Figure 1: L1-Linac schematic layout with beta functions and device names.

The low energy beam in the L1-Linac requires more frequent focusing stations than provided by the existing linac in sector-21 and thus two new quadrupole magnets must be added after the 21-1b and the 21-1c sections. New beam position monitors (BPMs) and x and y steering corrector magnets (not shown) are also required very near these new quadrupoles in order to control the trajectory to within 250 μ m.

In order to allow more linear bunch compression, a short (60 cm) X-band (11.424 GHz) RF section is included just after the three L1 S-band sections. This section operates with a decelerating voltage of 19 MV (at crest), but phased near the negative RF crest (phase of -160°). Therefore, the S-band RF sections must accelerate up to 268 MeV, where after the X-band decelerates down to 250 MeV. Both the S-band and the X-band contribute to the linear energy-chirp of 1.6% rms prior to the BC1 chicane.

PRD 1.3-002 2 of 3

Stanford Synchrotron Radiation Laboratory

The S-band RF must be stable to 0.1-deg rms with its one klystron. The RF amplitude must be stable to 0.1% rms, while the X-band RF must be stable to 0.5-deg-X rms with its one klystron and its RF amplitude must be stable to 0.25% rms

Table 1 lists some of the main parameters of the L1-Linac.

Table 1: L1-Linac parameters (1 nC, 120 Hz).

Parameter Description	Symbol	Value	Unit
Initial to final electron energy	Е	135 to 250	MeV
Bunch length (rms)	σ_{z}	830	μm
Active length of system	L	8.8	m
Relative energy spread of e bunch (rms)	$\sigma_{\!\scriptscriptstyle E}/E$	0.1 to 1.6	%
RF phase of S-band sections	φ_{s}	-25	S-deg
RF phase of X-band sections	$\varphi_{_{\!\scriptscriptstyle X}}$	-160	X-deg
S-band voltage at crest (not incl. ~15% overhead)	ΔV_s	147	MV
S-band mean phase stability (rms)	$\Delta arphi_{\scriptscriptstyle S}$	0.1	deg-S
S-band mean amplitude stability (rms)	$\Delta V/V_{s0}$	0.1	%
X-band voltage at crest (not incl. ~15% overhead)	$\Delta V_{_{X}}$	19	MV
X-band mean phase stability (rms)	$\Delta arphi_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	0.5	deg-X
X-band mean amplitude stability (rms)	$\Delta V_{x}/V_{x0}$	0.25	%