

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

LCLS Physics		Project	
Requirements Document #	1.1-314	Management	Revision 0
LCLS Beam Position Measurement System Requirements			
Patrick Krejcik (Author)	Si	gnature	Date
Bob Dalesio (System Manager)	Si	gnature	Date
Patrick Krejcik (System Physicist)	Si	gnature	Date
(Project Director)	Si	gnature	Date

Brief Summary: The electron beam position monitoring (BPM) system is to provide high-resolution measurement of the electron trajectory and charge on a pulse-bypulse basis under a variety of operating conditions and provide this information to a number of users. The users can range from an operator looking at a graphical display of the orbit along the accelerator to various software application packages that use the BPM data to analyze and tune the accelerator.

Keywords: diagnostics, controls, orbit

Key WBS#'s: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.9

System description

The electron beam position monitoring (BPM) system is to provide high-resolution measurement of the electron trajectory and charge on a pulse-by-pulse basis under a variety of operating conditions and provide this information to a number of users. The users can range from an operator looking at a graphical display of the orbit along the accelerator to various software application packages that use the BPM data to analyze and tune the accelerator.

Table 1: General operating requirements

Resolution for single pulse measurement, over		microns
10% of the aperture:		
Injector-linac-LTU, stripline	5	
LTU-undulator, cavity style	1	
Dynamic range:		
Nominal LCLS operating range	0.2 – 1	nC
Maximum drift:		Microns/hour
Stripline BPMs	5	
Cavity BPMs	1	
Maximum systematic position offset, including		Microns
mechanical and electrical offsets:		
Stripline BPMs	200	
Cavity BPMs	100	
Minimum bit size:		Microns at 0.2 nC
Stripline BPMs	1	
Cavity BPMs	0.2	
Noise floor:		Microns rms
Stripline BPMs	5	
Cavity BPMs	1	
Repetition rate:		
For single pulse readback with pulse i.d.	120	Hz
Non-LCLS operation	-	
Resolution:		
Linac only	20	microns
Dynamic range:		
single pulse maximum charge	8	nC
long pulse train maximum total charge	150	nC
maximum number of bunches per train	1500	-
e+/e- functionality	t.b.d.	-
Repetition rate:	120	Hz

The BPM system requirements can be divided according to the components of the system:

- The BPM pick-up on the beam line
- Cabling to the BPM processor
- BPM processor module
- Timing inputs to the BPM processor module
- Data transfer from the processor to other applications

The BPM pick-up on the beam line

Existing BPM pick-ups will be used in the linac. These are of the stripline type and are captive with in the quadrupole vacuum chambers. New construction for the injector beamline will include 15 new BPMs which will also be of the stripline type in order to be closely compatible with the BPM processors used in the linac. The aperture of the new BPMs will also be dictated by the nominal beam stay-clear of the linac. Protection collimators are 0.67" and the linac striplines have a 0.84" i.d.

The transport line at the end of the linac will use existing stripline BPMs in the BSY and will reuse existing FFTB style stripline BPMs in the LTU.

The higher resolution requirements of the undulator call for RF cavity BPMs. These are new constructions and will be designed based upon the resolution requirements and the stay-clear aperture of 6mm in the undulator beamline. There will also be 8 of these identical cavity BPMs installed in the end of the LTU beamline in order to satisfy the requirement for beam measurement redundancy before enabling the beam transport in the undulator. The redundancy requirement is part of the Machine Protection System (MPS) strategy for the undulator.

The locations of the BPMs are given in Table 2 which is derived from the optics listing of the accelerator and beam lines.

Cabling to the BPM processor

In the case of the stripline BPMs the signal is transported from the accelerator housing to the processor module located in an instrumentation rack that is normally accessible during operation. Attenuation and bandwidth of the cable limit the length of the cable to typically 150' maximum for semi-rigid coaxial cable. This in turn requires that in the linac, for example, that there be 3 instrumentation crates per linac sector to house the BPM processor modules.

The processing of the signals from the undulator cavity-style BPMs is sufficiently different that the cable requirements cannot be specified before further design work is done.

BPM processor module

The processor module design satisfies the following constraints.

• Gain sensitivity to satisfy the position resolution at the minimum charge of 0.2 nC on the linac-style stripline BPM

- Sufficient dynamic range in the ADC to accommodate beam excursions up to 1/3rd of the beam stay clear aperture without saturating over the range of charge from 0.2 to 1 nC. This implies a minimum of 14 bit ADC resolution.
- Bit resolution is specified as some reasonable fraction of the resolution of the BPM, so 1 micron bit resolution is called for stripline BPMs and 0.2 microns bit resolution for cavity BPMs.
- Noise floor of the processor is specified such that the rms noise in apparent beam position of a static test signal should not exceed half of the resolution specification.
- Self-calibrating feature to allow the gain to be set for a given bunch charge in operation in order to maximize the dynamic range of the ADC. In order to minimize interruption to the beam the calibration should be done between beam pulses.

The calibration process needs to be accomplished with out beam and should minimize any systematic offsets in the BPM position reading.

The calibration procedure should automatically detect and flag a bad calibration so that client applications ignore the data from a badly calibrated BPM. This is especially important for feedback applications.

This initial offset requirement is particularly important in the undulator cavity-style BPMs where the BPM performance is relied upon for the beam based alignment of the undulator system. Furthermore, the absolute position of the beam is critical for the machine protection of the undulator. The BPM offset of the undulator system must be accounted for before the first electron beam pulse is sent through the undulator.

- Drift in the apparent position of the beam has been specified as 5 microns (the resolution) per hour. This is based on the idea that the user could be reasonably expected to recalibrate the BPMs once per hour
- Averaging. Normally the position and charge of the beam should be read out on a single machine pulse. Some applications require that the position and charge be averaged over a number of consecutive machine pulses. The user should be able to specify an arbitrary number up to at least 100, over which the data will be averaged. Since the averaging is user specific it should be done in the IOC.
- Linearity is determined by the geometry of the stripline electrodes in the vacuum chamber and is therefore already fixed into the existing design. The front-end analogue signal processing may, according to the type of design chosen, introduce further nonlinearities. The IOC should provide optional correction to the linearity, individually to each user.

Timing inputs to the BPM processor module

The BPM signal is gated so there must be trigger signals sent to each processor. The trigger is derived from the accelerator-wide RF fiducial system whose requirements are described in a separate document. Each timing event will have a unique pulse id. and the trigger will have an adjustable delay time in steps of 8.4 ns (the period of the SLAC 119 MHz system). The duration of the beam signal from the stripline BPMs is very short (in the nanosecond range). The BPM timing system will allow the trigger time of each BPM to be scanned in steps of 8.4 ns and return the intensity signal (TMIT) from the BPM as a function of time in order to locate the presence of the beam signal in time.

The width of the gate will be set internally in the processor. The width of the gate should be at least as large as the timing step size of 8.4 ns in order to overlap the beam pulse. The maximum size of the gate should not be significantly larger than the minimum timing step in order to exclude noise from parasitic beam in adjacent RF buckets. Placing this upper limit on the width of the gate will also allow future upgrades to be considered for multi-bunch operation in the LCLS.

Data transfer from the processor to other applications

The timing system will supply a trigger with a unique pulse id. to the BPM module as part of the user requirement to be able to read out all BPMs (from the gun to the final dump) on the same pulse.

BPM data must be read out from the module either on selected pulses as determined by the beam code pattern associated with the trigger from the distributed timing system, or all consecutive beam pulses must be read out up to the maximum 120 Hz beam rate. In both cases the pulse id. needs to be preserved in order to identify any event in the machine with a particular beam pulse.

The BPM data should be accessible to more than one user application simultaneously. A beam orbit should be viewable to an operator at the same time as a feedback application is reading trajectory information and further users may be collecting BPM data in correlation with other machine parameters.

This has important consequences for choosing the appropriate calibration for a given measurement, since all users share the same calibration under this scheme. The SLC control system allowed private calibrations but at the cost of not sharing BPM data between clients.

The BPM data also needs to be stored in a circular buffer to allow the retrieval of consecutive pulses and also to allow access to earlier pulses when some non-synchronous event occurs. Initiating the readout of the circular buffer should be both on demand from a user or triggered by a fault condition so that the data is written to a file for fault analysis.

The ring buffer provides a tool for quantifying beam jitter, analyzing the transient behavior of feedback systems and providing fault analysis capability after a machine trip (abort).

The ring buffer should provide a running estimate of average and rms values that can be sent to an archiver for longer term monitoring of the performance.

Name in optics listing	Туре	minimum resolution specified in optics listing	Z-location /meters, specified in optics listing
BPM6	Injector, new stripline	20	0.217
BPM7	Injector, new stripline	20	0.717
BPM8	Injector, new stripline	20	3.182
BPM9	Injector, new stripline	20	3.582
BPM10	Injector, new stripline	10	6.113
BPM11	Injector, new stripline	20	7.95
BPM12	Injector, new stripline	20	8.525

Table 2: BPMs and their location from the optics listing

BPM13	Injector, new stripline	20	9.786
BPM14	Injector, new stripline	20	11.147
BPM15	Injector, new stripline	20	11.552
BPMA11	Injector, new stripline	20	14.92
BPMA12	Injector, new stripline	20	17.965
BPM21201	linac stripline	20	22.25
BPMS11	Injector, new stripline	20	26.274
BPMM12	Injector, new stripline	20	30.588
BPM21301	linac stripline	20	34.795
BPMM14	BC1, new stripline	20	36.538
BPM21401	linac stripline	20	45.892
BPM21501	linac stripline	20	58.236
BPM21601	linac stripline	20	70.581
BPM21701	linac stripline	20	82.925
BPM21801	linac stripline	20	95.27
BPM21901	linac stripline	20	107.933
BPM22201	linac stripline	20	122 803
BPM22301	linac stripline	20	135 148
BPM22401	linac stripline	20	147 492
BPM22501	linac stripline	20	159 836
BPM22601	linac stripline	20	172 181
BPM22701	linac stripline	20	184 525
BPM22801	linac stripline	10	104.020
BPM22001	linac stripline	10	200 533
BPM23201	linac stripline	10	209.000
BPM23301	linac stripline	10	224.403
BPM23401	linac stripline	10	2/10/092
BPM23501	linac stripline	10	243.032
BPM23601	linac stripline	10	201.430
BPM23701	linac stripline	10	286 125
BPM23801	linac stripline	10	200.123
BPM23001	linac stripline	10	290.47
BPM23301	linac stripline	10	376.003
BFIM24201	linac stripline	10	320.003
DFIVI24301	linac stripline	10	250,040
	linac stripline	10	300.092
DPINI24001	linac stripline	10	303.030
BPIM24601	linac stripline	10	375.381
BPM24701		10	387.725
BPMS21	BC2, new stripline	40	402.742
BPM24901		10	415.271
BPM25201		10	427.615
BPM25301		10	439.96
BPM25401		10	452.304
BPM25501		10	464.649
BPM25601		10	476.993
BPM25701	linac stripline	10	489.337
BPM25801	linac stripline	10	501.682
BPM25901	linac stripline	10	514.267

BPM26201	linac stripline	10	529.215
BPM26301	linac stripline	10	541.56
BPM26401	linac stripline	10	553.904
BPM26501	linac stripline	10	566.249
BPM26601	linac stripline	10	578.593
BPM26701	linac stripline	10	590.937
BPM26801	linac stripline	10	603.282
BPM26901	linac stripline	10	615.867
BPM27201	linac stripline	10	630.815
BPM27301	linac stripline	10	643.16
BPM27401	linac stripline	10	655.504
BPM27501	linac stripline	10	667.849
BPM27601	linac stripline	10	680.193
BPM27701	linac stripline	10	692.537
BPM27801	linac stripline	10	704.882
BPM27901	linac stripline	10	717.467
BPM28201	linac stripline	10	732.415
BPM28301	linac stripline	10	744.76
BPM28401	linac stripline	10	757.104
BPM28501	linac stripline	10	769.449
BPM28601	linac stripline	10	781.793
BPM28701	linac stripline	10	794.137
BPM28801	linac stripline	10	806.482
BPM28901	linac stripline	10	819.067
BPM29201	linac stripline	10	834.015
BPM29301	linac stripline	10	846.36
BPM29401	linac stripline	10	858.704
BPM29501	linac stripline	10	871.049
BPM29601	linac stripline	10	883.393
BPM29701	linac stripline	10	895.737
BPM29801	linac stripline	10	908.082
BPM29901	linac stripline	10	920.745
BPM30201	linac stripline	10	935.615
BPM30301	linac stripline	10	947.96
BPM30401	linac stripline	10	960.304
BPM30501	linac stripline	10	972.649
BPM30601	linac stripline	10	984.791
BPM30701	linac stripline	10	997.151
BPM30801	linac stripline	10	1009.481
BPM30400	linac stripline	10	1023.328
BPM46002	linac stripline	10	1039.567
BPM46003		10	1044.108
BPM46005	linac stripline	10	1065.525
BPM92002	linac stripline	10	1075.54
BPM92003	linac stripline	10	1077.053
BPM92005		20	1163.695
BPM92101	linac stripline	20	1164.788

BPM92102	linac stripline	20	1168.788
BPM92103	linac stripline	20	1183.393
BPMVM1	FFTB stripline	5	1201.944
BPMVM2	FFTB stripline	5	1202.905
BPMVB1	FFTB stripline	5	1212.266
BPMVB2	FFTB stripline	5	1216.727
BPMVB3	FFTB stripline	5	1221.188
BPMVM3	FFTB stripline	5	1230.549
BPMVM4	FFTB stripline	5	1231.51
BPMDL1	FFTB stripline	5	1247.955
BPMT12	FFTB stripline	5	1265.86
BPMDL2	FFTB stripline	5	1283.766
BPMT22	FFTB stripline	5	1301.671
BPMDL3	FFTB stripline	5	1319.577
BPMT32	FFTB stripline	5	1337.482
BPMDL4	FFTB stripline	5	1355.388
BPMT42	FFTB stripline	5	1373.293
BPMEM1	FFTB stripline	5	1377.715
BPMEM2	FFTB stripline	5	1382.176
BPMEM3	FFTB stripline	5	1394.637
BPMEM4	FFTB stripline	5	1399.098
RFB01	Undulator cavity style	1	1401.729
BPME31	FFTB stripline	5	1410.144
BPME32	FFTB stripline	5	1427.776
RFB02	Undulator cavity style	1	1436.992
BPME33	FFTB stripline	5	1445.408
BPME34	FFTB stripline	5	1463.04
RFB03	Undulator cavity style	1	1472.256
BPME35	FFTB stripline	5	1480.671
BPME36	FFTB stripline	5	1498.303
RFB04	Undulator cavity style	1	1507.519
BPMUM1	FFTB stripline	5	1515.35
RFB05	Undulator cavity style	1	1515.98
BPMUM2	FFTB stripline	5	1519.81
RFB06	Undulator cavity style	1	1520.441
BPMUM3	FFTB stripline	5	1528.271
RFB07	Undulator cavity style	1	1528.902
BPMUM4	FFTB stripline	5	1532.732
RFB08	Undulator cavity style	1	1533.363
RFBU	Undulator cavity style	1	1541.988
RFBU	Undulator cavity style	1	1545.884
RFBU	Undulator cavity style	1	1549.78
RFBU	Undulator cavity style	1	1553.789
RFBU	Undulator cavity style	1	1557.799
RFBU	Undulator cavity style	1	1561.695
RFBU	Undulator cavity style	1	1565.704
RFBU	Undulator cavity style	1	1569.714

RFBU	Undulator cavity style	1	1573.61
RFBU	Undulator cavity style	1	1577.619
RFBU	Undulator cavity style	1	1581.629
RFBU	Undulator cavity style	1	1585.525
RFBU	Undulator cavity style	1	1589.534
RFBU	Undulator cavity style	1	1593.544
RFBU	Undulator cavity style	1	1597.44
RFBU	Undulator cavity style	1	1601.449
RFBU	Undulator cavity style	1	1605.459
RFBU	Undulator cavity style	1	1609.355
RFBU	Undulator cavity style	1	1613.364
RFBU	Undulator cavity style	1	1617.374
RFBU	Undulator cavity style	1	1621.27
RFBU	Undulator cavity style	1	1625.279
RFBU	Undulator cavity style	1	1629.289
RFBU	Undulator cavity style	1	1633.185
RFBU	Undulator cavity style	1	1637.194
RFBU	Undulator cavity style	1	1641.204
RFBU	Undulator cavity style	1	1645.1
RFBU	Undulator cavity style	1	1649.109
RFBU	Undulator cavity style	1	1653.119
RFBU	Undulator cavity style	1	1657.015
RFBU	Undulator cavity style	1	1661.024
RFBU	Undulator cavity style	1	1665.034
RFBU	Undulator cavity style	1	1668.93
RFBUE1	Undulator cavity style	1	1687.801
RFBUE2	Undulator cavity style	1	1703.723
BPMUE1	FFTB stripline	20	1724.523
BPMDD	FFTB stripline	20	1754.626