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Abstract

We discuss the transport through a system constituted of drift + bend-
ing magnet + drift. Parameters for obaining a point-to-point imaging in
both the vertical and horizontal plane are derived. Numerical solutions
are given.

0.1 Description

The gun spectrometer will be part of a relay imaging system designed to char-
acterize the beam exiting the gun. A YAG1 screen has been positioned at 0.4
m from the cathode. The gun solenoid will be used as an optical element to
image the cathode plane on this YAG1 screen indicating what is the unifor-
mity of emission from the cathode. The system solenoid +YAG1 will also be
used to characterize the intrinsic emittance (”thermal emittance”) by perform-
ing solenoid scans. The spectrometer is being designed such that the beam at
the location of YAG1 will itself will be imaged on to a YAG2 screen located after
the spectrometer. Transverse properties along the bunch can then be measured
such as the slice thermal emittance.

The spectrometer will primarily be used to measure longitudinal beam prop-
erties such as absolute energy, slice energy spread for low charge, correlated
energy spread and current uniformity. These measurements will be described in
details in another note.

In this note, we describe calculations for obtaining the point-to-point imaging
and to get a high resolution power.

The resolution power has been defined in [Carey’s ” Optics of Charged Par-
ticles] P88].

1 Point to point imaging with sector magnet

1.1 Matrix analysis



We consider the bending magnet (wedge magnet) matrix M
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For a drift of length L, the transport matrix is :

1 L o
Drift(L)=]0 1 0
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The transport to the screen is represented by R = Drift(L2) x M x Drift(L1),
with L1 the distance from source to entrance bending magnet and L2 the dis-
tance from exit magnet to exit. For a point X, =(z,, z,/, ) ,the image X = RX,
is X(z, 21,6).
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The resolving power R is defined by

Ry
21’0R11
where x, is the half-beam size
For a point-to-point imaging, the image position y does not depend on x’.
Then Ry = 0, from which we derive
psina + Ly cos
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Assuming the half beam size x, is 2 04, ,

0y, =Rn1 \/a,?w (1 + (472)2 O%)

1.2 Numerics for minimum resolution

To resolve 10keV of a 5 MeV beam (05 = 2.1072), we need

IRos > 1
R > 125

Assuming, 0., < 2 mm, z, < 4 mm,
R >125.24.107° =1

At 40 cm from the cathode (position of screen YAGIL), and according to
PARMELA simulations, o, is in fact close to 1.78 mm.
The requirement for Ry3/R;; should be larger than 0.89.

In figurel and figure2, we see that Ri3/R1; is always smaller than 0.89. In
figure 3, we see that there exist solutions providing Rj3/Rq; larger than 0.89.

In Paragraph 2, we will solve directly for a point-to-point imaging in both
horizontal and vertical planes. We will then find a solution for L1 = 0.4m.

1.3 Numerics for beam size extension

Let’s assume that parameters are chosen for a Ry3/R11=0.89.

For a 250 keV rms relative beam energy spread (o5 = 5.1072), the beam
extension is :

Ri1 (02, + %?02)1/2 = Ru1 ((1.79.1073) 4 (0.89 % 5.1072)?)
R

Y2 _ 446 mm

The image will be too large to be captured on the screen.

The good energy resolution will be obtained at the expense of of large beam
size. In revision 1, we will discuss a solution which includes an additional
quadrupole. With that quadrupole, the dispersion can be reduced and the
image will fit the screen.



2 Point-to-point imaging including pole face ro-
tation to sector magnet

2.1 Matrix analysis

For treating the case of the pole face rotation we use 6x6 matrices.
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The pole face rotation matrix is
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We assume the same angle for the entrance and exit pole faces. The transport
natrix is then R = Drift(L2) x P x M x P x Drift(L1).
The coefficients of interest are
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One can also write
Ris = <cosa—2h$) Ly + psina + Ly cosa + tan 8 [sina(Ll—i—Lg)—i—@]
sin ol Lo tanQﬂ
Ry = Ly {cosa—?% sina + tan 3 [Sina—l—QM} + tan? ﬁ%]

+psina + Ly [cosa + tan G sin o]

Rsy = Lo {1 + a% tan?(8 — o) — tan(8 — 1) (a + 2%)] + pa+ L1(1 — atan(8 — )

For a point-to-point imaging system in both planes, both R;o2 = 0 and Rgy
=0.
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Again the resolving power is defined by

__Rie
2$0R11
with 2x, the beam size at the source
Then,
R (I —cosa)(p+ Latan3) + Lo sin

2z, [cosa — % + tan B(sin o + %%) + tan? ﬂLzsplna]

The resolving power can be maximized by introducing a slit which reduces
the x, value. In our design, we have not included the possibility of inserting a
slit. If it’s proven to be necessary at a later date, this option will be considered.

2.2 Numerical solution

A Matlab solver was written to find numerical solutions giving Ri2 = R34 =0.
The results are presented in figure 4. Obviously, those results don’t include
space charge effects and include only linear optics calculation. Numerical values
are given in Table 1.

The constraints are for our best solution are:

- good resolving power so Rig/Ri1large

- not too large image Rig not too large

- L2 should not be too small to accomodate the T tank for the measurement
screen.

The optimal cases are given in Tablel.1. Those values were checked using
MAD. The second order coefficients were then extracted.

8 | Li [ L Lo o Rig(m) | Ties | Tii6 | Tios | Tsz6 | Taa6
251031 0.2 0.2723 | 86 0.5 -0.57 1.75 | 0.55 1.037 | 0.77
30 | 0.3 ] 0.25 | 0.212 98.39 0.51 -0.55 1.79 | 0.603 | 0.32 0.603
30 1 0.3]0.3 0.3063 | 98.21 0.705 -0.793 | 2.02 | 0.67 0.33 0.83
30 {04103 0.227 98.683 | 0.576 -0.601 | 1.67 | 0.755 | 0.312 | 0.670

Table 1.1- Numerical solution for point-to-point focusing in both horizontal
and vertical planes. The second order coefficients were computed using MAD.

2.3 Effect of fringe field
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Figure 4: Numerical Solution from Matlab Solver; The computation only in-
cludes linear optics and no space charge
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2.3.1 Analytic formula for fringe field ¢

From K.Brown [TRANSPORT manual], the fringe field is given by

1 + sin?
vo= LSO ek g
po B Po
g : total gap of magnet
6 . angle of rotation of pole face
Po : bending radius

K, and K, tabulated for magnet family

We use g = 1 inch for the total gap and K1 = 0.45, K2 = 2.8 (for a sqaure
edged magnet).

2.3.2 Numerical solution

Since we solve in a , we don’t know what is p. Solving the problem in a self-
consistent way is difficult and not very useful here. p was deduced by solving
with v = 0 and then injected in the solver. It was then checked that the v
value did not vary much. This is shown in figure 5.

The bending angle and resolving power do not change when including the
fringe field. The dispersion increases. The distance from bending magnet exit
to screen is slightly increased.

The numerical solution obtained with our Matlab solver is given in figure 6.
The optimal cases were then computed with MAD. Those results are summa-
rized in the table below, which also show the second order coefficients:

8 | L | L Lo @ Rig(m) | Ties | Tuie | Ti26 | R R3s | Ts36 | Taae
251 0.3 0.2 0.3879 | 82.63 | 0.6515 -0.75 2.00 0.6 -1.21 -1.4 1.39 | 1.06
30| 0.3 ] 0.25 | 0.284 95.11 | 0.623 -0.723 | 2.01 0.64 -0.97 -1.12 | 042 | 0.8
301 0.3 0.3 0.399 95.47 | 0.846 -1.01 2.273 | 0.723 | -1.245 | -1.32 | 0.43 | 1.08
30| 041 0.3 0.298 95.48 | 0.684 -0.766 | 1.853 | 0.804 | -0.81 -1.00 | 0.39 | 0.878

Table 2.1- Numerical solution for point-to-point imaging including fringe
field effects.

2.3.3 Quantification of Second Order Effects

The second order coefficients are negligeable. The interested reader can check
it by himself.
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Figure 5: Self-Consistent solution for numerical model including fringe field

Case of Tig6 Tig6 will possibly contribute to the beam size.

For a 1nC bunch, with the typical LCLS parameters, the normalized rms
energy spread is of 0.67% at the object and 1.32% at the image. At the object
Ogo = 1.78 mm.

The square of the rms beam size is given by: R? 02, + Rigo2 + Tke < 6* >

<& >= 4.49.107°%,05 = 0.67%, < 6*>=9.19.10"? at object point

<& >= 1.75.107%, 05 =1.32%, < 6* >=1.24.10"7 at image point

The expected beam size is for case 1

1.2121.78% + 0.652 44.9 4 0.752 9.2.1073 = 4.63 + 18.9 + 0.0052

Case of T3s5 The square of the vertical beam size is 02 =R3307,4 1556 < &t >
Using the values from case 1 of Table 2, 022 1.4%1.22241.39%2 0.124 = 6.4.
The vertical beam size is 1.53 mm and Tsgg is negligeable.

3 Simulations with PARMELA
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Figure 6: Numerical Solution for point-to-point imaging; the model includes
fringe field effects
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Figure 7: PARMELA run; rms beam sizes are given in mm

The standard LCLS parameters from the 2002 tuning were used.
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The PARMELA runs shown in figure 7 were performed for case 4 of tablel.1
with 98.6 degrees bend and 30 degrees for pole face rotation. The beam sizes
at the spectrometer screen are given in mm. For low charges, the image will
be contained on the screen. For high charges, the horizontal rms beam size
will be as large as 9mm and the image will exceed the screen dimension. (
The possibility of reducing the dispersion and so the horizontal beam size will
be discussed in the next note). In those simulations YAG1 had been located
at 70.1cm from the cathode. YAG1 had been later moved to 40 cm from the

cathode.
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