Compact Femtosecond / Picosecond Laser

Applications
- Two-photon microscopy
- Pump-probe experiments
- Fluorescence Spectroscopy
- Opto-electronic testing
- Electro-optic sampling
- RF photocathodes
- Seeding amplifiers

Features
- Passively mode-locked DPSSL
- Integrated pump laser
- Turn-key operation
- Customizable design
- Low maintenance

Options
- Clock synchronization
- Long pulses
- Long term power stabilization
- Remote control
- RS-232

<table>
<thead>
<tr>
<th>Pulse width</th>
<th>Wavelength</th>
<th>Repetition rate</th>
<th>Output power</th>
<th>Power stability</th>
<th>Spatial mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>70fs - 100ps</td>
<td>780nm - 860nm</td>
<td>75MHz - 200MHz</td>
<td>500mW</td>
<td>1% / °C</td>
<td>TEM_{00} 1.1</td>
</tr>
<tr>
<td>M²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The mode-locking technique of the PALLAS is the so called "soliton mode-locking" with Time-Bandwidth® Products’ patented SESAM™ device which has several advantages over common used mode-locking techniques like Kerr lens mode-locking or active mode-locking with acousto-optical modulators.

In contrast to Kerr lens mode-locking the PALLAS is not operated at one end of the stability regime. SESAM™ passive mode-locking means no complicated and noisy high frequency electronic is needed. Furthermore the PALLAS is all solid-state, so no degeneration of the pump or the mode-locker like in ordinary ultra-fast laser systems will take place.

Does the PALLAS laser system not match your requirements? Please let us know the specifications of the laser you are looking for. A superior technology and a strong team enable us to tailor our products to your special needs.

All specifications are subject to change without notice. All numbers given in this datasheet are typical values and may depend on the specific laser configuration.