Table of Contents

The hyperlinks at the chapter titles and the page title are pointing
to the corresponding online text of the report in PDF format. The
hyperlink, associated with the graphics to the left, points to a
page that will let you select PostScript format as well as PDF format versions of the report.

1 Executive Summary  
1.1 Introduction 1-1
1.2 The Scientific Case 1-3
1.3 FEL Physics and Simulations 1-3
1.4 The Injector 1-4
1.5 Acceleration and Compression 1-4
1.6 The Undulator 1-5
1.7 Undulator-to-Experimental Area 1-6
1.8 Take-off Optics and Beamline Layout 1-7
1.9 Instrumentation and Controls 1-7
1.10 Alignment 1-8
1.11 Radiation Protection 1-8
1.12 Basic Parameters 1-9
1.13 Estimated Costs, Proposed Schedule, and Project Execution 1-10
2 Overview  
2.1 Introduction 2-1
2.2 Principle of Operation 2-1
2.3 Overall Layout 2-2
2.4 Performance Characteristics 2-3
2.5 The Photoinjector 2-5
2.6 Compression and Acceleration 2-6
2.7 The Undulator 2-6
2.8 The X-ray Optics and Experimental Areas 2-6
2.9 Applications of the LCLS 2-7
2.10 Summary 2-8
2.11 References 2-8
3 The Scientific Case  
  Technical Synopsis 3-1
3.1 History of Scientific Interest in X-ray Free Electron Lasers 3-1
3.2 Unique Features of X-ray FEL Radiation 3-3
  3.2.1 Fundamental Quantum Mechanics 3-5
  3.2.2 Atomic, Molecular, and Plasma Physics 3-6
  3.2.3 Chemical Physics 3-7
  3.2.4 Condensed Matter Physics and Materials Science 3-7
  3.2.5 Biology 3-8
3.3 The Role of the LCLS 3-9
3.4 References 3-9
4 FEL Physics  
  Technical Synopsis 4-1
4.1 Introduction 4-1
  4.1.1 Spontaneous Radiation from the LCLS Undulator 4-3
4.2 FEL Radiation 4-7
4.3 References 4-11
5 FEL Parameters and Performance  
  Technical Synopsis 5-1
5.1 Introduction 5-1
5.2 Parameter Optimization 5-2
5.3 Electron Beam Focusing 5-4
  5.3.1 Lattice Design Criteria 5-5
  5.3.2 Focusing Method (Lattice) 5-5
  5.3.3 Optimum Beam Size 5-6
  5.3.4 Tolerable Beta-Function Modulation Amplitude 5-7
5.4 Undulator Sections 5-9
5.5 Parameter Sensitivities 5-9
5.6 Temporal Structure of Laser Power 5-11
5.7 Effect of Deviations from the Ideal Electron Trajectory 5-12
  5.7.1 Undulator Steering and Corrector Description 5-12
  5.7.2 Magnetic Field Errors 5-12
  5.7.3 Trajectory and Error Control Requirement from Simulations 5-12
  5.7.4 Magnetic Field Error Tolerances 5-13
  5.7.5 Steering Algorithm 5-13
  5.7.6 Steering Error Tolerance 5-14
  5.7.7 Optimum Steering Station Separation 5-14
  5.7.8 Undulator Matching Tolerances 5-16
5.8 Emission of Spontaneous Radiation 5-16
  5.8.1 Average Energy Loss 5-16
  5.8.2 Energy Spread Increase 5-17
  5.8.3 Emittance Increase 5-18
5.9 Output Power Control 5-18
  5.9.1 Peak Current 5-18
  5.9.2 Phase Shifter at Saturation 5-19
5.10 Initial Phase Space Distribution (Coupling to Linac Simulation Results) 5-19
  5.10.1 Transverse Halo 5-20
5.11 Optical Klystron 5-20
5.12 Summary 5-21
5.13 References 5-21
6 Photoinjector  
  Technical Synopsis 6-1
6.1 Electron Source 6-2
  6.1.1 RF Photocathode Gun 6-2
    Gun Description 6-2
    Field Balance 6-3
    Symmetrization 6-4
    Emittance Compensation 6-5
    Summary of Experimental Results at ATF 6-5
    Photocathode 6-7
    RF System 6-7
    Emittance Compensating Solenoid 6-8
    Beamline 6-8
    Vacuum System 6-8
  6.1.2 Laser System 6-9
    System Description 6-10
    Temporal Pulse Shaping 6-13
    Fourier Relay Optics 6-14
    Spatial Pulse Shaping 6-14
    Frequency Conversion 6-15
    Grazing Incidence 6-15
    Stability of Laser Pulse 6-16
    Diagnostics 6-18
  6.1.3 Choice of Laser System 6-21
6.2 Linac 0 6-24
  6.2.1 Comments on Emittance Compensation 6-24
  6.2.2 System Description 6-26
  6.2.3 Emittance Compensation in Linac 0 6-27
6.3 References 6-30
7 Accelerator  
  Technical Synopsis 7-1
7.1 Introduction and Overview 7-1
7.2 Compression and Longitudinal Dynamics 7-3
  7.2.1 Bunch Compression Overview 7-3
  7.2.2 Parameters 7-5
  7.2.3 Longitudinal Wakefields and Non-linearities 7-7
    Geometric Wakefields 7-7
    Resistive Wall Wakefields 7-8
  7.2.4 Beam Jitter Sensitivities 7-11
  7.2.5 Energy Management and Overhead 7-12
7.3 Transverse Linac Beam Dynamics 7-13
  7.3.1 The L0 Linac 7-14
  7.3.2 The L1 Linac 7-14
  7.3.3 The L2 Linac 7-16
  7.3.4 The L3 Linac 7-19
7.4 Design of the Second Bunch Compressor 7-21
  7.4.1 Overview and Parameters 7-21
  7.4.2 Momentum Compaction 7-23
  7.4.3 Incoherent Synchrotron Radiation (ISR) 7-24
  7.4.4 Coherent Synchrotron Radiation (CSR) 7-24
    Unshielded Radiation 7-24
    Shielded Radiation 7-26
    Transverse Forces 7-28
    Calculations with a Transient Model 7-29
  7.4.5 Resistive Wall Longitudinal Wakefields in the Bends 7-31
  7.4.6 Beam Size, Aperture and Field Quality 7-32
  7.4.7 Tuning and Correction 7-32
7.5 Design of the First Bunch Compressor 7-33
  7.5.1 Overview and Parameters 7-33
  7.5.2 Beam Size, Aperture, and Field Quality 7-34
  7.5.3 Tuning and Correction 7-35
7.6 Beam Transport Lines 7-36
  7.6.1 Low-Energy Dog Leg 7-36
    Parameters 7-37
    Beam Size, Aperture, and Field Quality 7-38
    Tuning and Correction 7-38
  7.6.2 High-Energy Dog Leg 7-39
    Parameters 7-40
    Beam Size, Aperture, and Field Quality 7-41
    Tuning and Correction 7-41
    Coherent Radiation 7-41
7.7 Instrumentation, Diagnostics, and Feedback 7-42
  7.7.1 Transverse Emittance Diagnostics 7-42
    ED0 Emittance Station 7-44
    ED1 Emittance Station 7-44
    L2-ED Emittance Station 7-44
    BC2-ED Emittance Station 7-45
    L3-ED Emittance Station 7-45
    ED2 Emittance Station 7-45
  7.7.2 Bunch Length Diagnostics 7-45
  7.7.3 Beam Energy Spread Diagnostics 7-47
    DL1 Energy Spread Diagnostics 7-47
    BC1 Energy Spread Diagnostics 7-47
    BC2 Energy Spread Diagnostics 7-48
    DL2 Energy Spread Diagnostics 7-48
  7.7.4 Orbit and Energy Monitors and Feedback Systems 7-48
    Orbit Feedback Systems 7-48
    Energy Feedback Systems 7-49
7.8 The Wake Functions for the SLAC Linac 7-49
  7.8.1 Introduction 7-49
  7.8.2 The Calculated Wakefields for the SLAC Linac 7-50
  7.8.3 Discussion 7-51
  7.8.4 Confirmations 7-54
  7.8.5 Resistive Wall Wakefields 7-54
  7.8.6 The Impedance Due to the Roughness of the Iris Surface 7-56
7.9 Summary of Dilution Effects 7-57
  7.9.1 Transverse Emittance Dilution 7-57
  7.9.1 Final Energy Spread 7-58
7.10 References   7-59
8 Undulator  
  Technical Synopsis 8-1
8.1 Overview 8-2
  8.1.1 Introduction 8-2
  8.1.2 Undulator Design Summary 8-2
    Introduction 8-2
    Design Concept History 8-3
    The Undulator 8-3
    Strong Focusing 8-5
    Undulator Tolerances 8-7
    Undulator Construction 8-7
    Mechanical, Thermal, and Geophysical Engineering 8-8
8.2 Undulator Magnetic Design 8-9
  8.2.1 Design of Undulator Segments 8-9
    Basic Considerations 8-9
    Correcting Local Field Errors 8-10
    Initial Sorting Model and Results 8-11
    Use of Shims to Correct Field Errors 8-15
  8.2.2 End Design of Undulator Segments 8-15
8.3 Undulator Mechanical Design 8-17
  8.3.1 Mechanical and Thermal Design 8-17
    Introduction 8-17
    Piers 8-18
    Motors 8-20
    Girder 8-21
    Thermal Considerations 8-23
    Vibration of the Girder 8-24
    Dimensional Stability 8-24
    Magnet Support 8-25
    Conclusions 8-30
  8.3.2 Electron Beam Collimation and Vacuum Chamber Design 8-30
    Beam Parameters Used in These Calculations 8-30
    Permanent Magnet Material 8-30
    Undulator Vacuum Chamber 8-32
    Beam Strikes at the Entrance to the Vacuum Chamber 8-32
    Beam Strikes Inside the Undulator 8-33
    Adjustable Collimators to Protect Undulator and Vacuum Chamber 8-35
    Fixed Aperture Protection Collimators 8-36
    Vacuum Chamber Surface Roughness 8-37
8.4 Undulator Vacuum System 8-37
  8.4.1 System Requirements and Description 8-37
  8.4.2 Gas Load and Vacuum Pressure 8-39
  8.4.3 Thermal Considerations 8-42
8.5 Alignment and Trajectory Control 8-42
  8.5.1 Introduction 8-42
  8.5.2 Undulator Beam Based Alignment 8-43
    Introduction 8-44
    Simulation Results 8-47
    Sensitivities 8-56
    Summary 8-57
  8.5.3 The Singular Value Decomposition (SVD) Technique 8-57
    Description 8-57
    Simulation Results 8-59
    Summary 8-61
8.6 Beam Diagnostics 8-61
  8.6.1 RF Cavity BPMs 8-61
    Review of BPM Technology 8-62
    Evaluation of BPM Options for the LCLS 8-63
    LCLS Stripline BPM 8-64
    LCLS Microwave Cavity BPM 8-65
    Parameters of the LCLS BPM Cavity 8-68
    Microwave Cavity Beam Impedance 8-68
    Microwave Cavity Signal Processing 8-70
  8.6.2 Carbon Wire BPMs 8-71
    Beam Position Measurement 8-71
    Beam Emittance Measurements 8-74
  8.6.3 The Combined Electron and Photon Beam Diagnostic 8-75
  8.6.4 Wire Position Monitors 8-77
8.7 Wakefield Effects in the Undulator 8-77
  8.7.1 Introduction 8-77
  8.7.2 Wakefield Induced Beam Degradation 8-78
  8.7.3 The Resistive Wall Wakefields 8-80
  8.7.4 The Effect of Flange Gaps, Pumping Slots, and Bellows 8-81
  8.7.5 The Effect of Wall Surface Roughness 8-82
  8.7.6 The Effects of the Expected Bunch Shape 8-84
  8.7.7 Conclusion 8-84
8.8 Ion Effects 8-85
  8.8.1 Introduction 8-85
  8.8.2 Ionization Processes 8-85
  8.8.3 Emittance Dilution 8-87
  8.8.4 Conclusion 8-89
8.9 References 8-89
9 Undulator-to-Experimental Area  
  Technical Synopsis 9-1
9.1 Transport System 9-1
9.2 Shielding Enclosures 9-4
9.3 Beam Lines and Experimental Stations 9-5
  9.3.1 Experimental Beam Lines 9-5
  9.3.2 The Long Beam Line 9-6
  9.3.3 Experimental Stations 9-8
9.4 Experimental Hall 9-9
9.5 References 9-9
10 Take-off Optics and Beam Line Layouts  
  Technical Synopsis 10-1
10.1 Coherent Radiation 10-2
10.2 Spontaneous Radiation Calculations 10-8
  10.2.1 Spectral-angular Radiation Profiles 10-10
  10.2.2 Far-field Spontaneous Radiation Peak Power Density 10-18
10.3 Bremsstrahlung Calculations 10-20
  10.3.1 Bremsstrahlung from Halo 10-20
  10.3.2 Gas Bremsstrahlung 10-24
  10.3.3 Muons 10-25
  10.3.4 Future Work: Other Radiation Sources 10-25
10.4 Optical System 10-26
  10.4.1 Differential Pumping Section 10-28
  10.4.2 X-ray Slits (Collimators) 10-30
  10.4.3 Personnel Protection System Beam Stoppers 10-33
  10.4.4 Absorption cell 10-34
  10.4.5 Mirrors 10-39
  10.4.6 Crystals 10-44
10.5 Beam Line Optical Instrumentation 10-46
10.6 References 10-47
11 Instrumentation and Controls  
  Technical Synopsis 11-1
11.1 Control System 11-2
11.2 Undulator Control 11-4
  11.2.1 Undulator Elements 11-4
  11.2.2 Mover Mechanism 11-5
  11.2.3 Stepping Motor Controllers and Position Potentiometers 11-5
  11.2.4 The Wire Position Monitor System 11-6
  11.2.5 The Beam Position Monitors 11-7
  11.2.6 Control System Layout 11-7
11.3 Beam Line Electronics and Controls 11-10
  11.3.1 X-ray Optics and Experimental Stations 11-10
  11.3.2 Control System Objectives 11-10
  11.3.3 Control System Layout 11-10
  11.3.4 Motion Controls 11-11
  11.3.5 Photon Beam Stabilization at the Sample 11-11
  11.3.6 Timing System 11-13
11.4 Personnel Protection 11-16
11.5 Machine Protection 11-20
12 Alignment  
  Technical Synopsis 12-1
12.1 Surveying Reference Frame 12-2
  12.1.1 Network Design Philosophy 12-3
  12.1.2 Network Lay-Out 12-5
    Linac Network 12-5
    Undulator Network 12-5
    Transport Line/Experimental Area Network 12-6
  12.1.3 Alignment Coordinate System 12-6
  12.1.4 Network Survey 12-7
  12.1.5 Data Analysis and Data-Flow 12-9
12.2 Lay out Description Reference Frame 12-9
  12.2.1 Lattice Coordinate System 12-9
  12.2.2 Tolerance Lists 12-10
  12.2.3 Relationship between Coordinate Systems 12-10
12.3 Fiducializing Magnets 12-10
12.4 Absolute Positioning 12-10
  12.4.1 Undulator Absolute Positioning 12-11
    Undulator Anchor Hole Layout Survey 12-11
    Pre-alignment of Girder Supports and Magnet Movers 12-11
    Absolute Quadrupole Positioning 12-12
    Quality Control Survey 12-12
  12.4.2 Transport Line and Experimental Area Absolute Positioning 12-12
12.5 Relative Alignment 12-12
  12.5.1 Relative Undulator Alignment 12-12
    Introduction 12-12
    Relative Quadrupole Positioning 12-12
    Undulator Alignment 12-13
  12.5.2 Linac Smoothing 12-13
    Purpose of Linac Smoothing 12-13
    Linac Straightness Measurement Procedure 12-14
  12.5.3 Relative Alignment of Transport Line and Experimental Area Components 12-15
12.6 Undulator Monitoring System 12-15
12.7 References 12-15
13 Radiation Issues  
  Technical Synopsis 13-1
13.1 Radiation Concerns Downstream of the Undulator 13-1
13.2 Radiation Issues in the Undulator 13-1
  13.2.1 Introduction 13-1
  13.2.2 Beam Scattering on the Residual Gas 13-2
  13.2.3 Spontaneous Radiation 13-2
  13.2.4 Bremsstrahlung from Halo on Collimators 13-5
    Normal Incidence 13-5
    Grazing Angle Incidence 13-6
  13.2.5 Induced Activity 13-8
13.3 References 13-9
A Parameter Tables  
Table Description  
1 Beam Tracking A-1
2 Parameter Summary A-2
3 Gun Laser A-3
4 Injector - rf Photocathode Gun A-4
5 Injector - Accelerator A-5
6 Injector - Dogleg A-6
7 General Linac Parameters A-8
8 Linac-1 A-9
9 Bunch Compressor-1 A-11
10 Linac-2 A-13
11 Bunch Compressor-2 A-15
12 Linac-3 A-17
13 Linac to Undulator Transport A-19
14 Undulator A-21
15 FEL A-25
16 Electron Beam Dump A-27
17 X-ray Optics A-28


SLACAPSLANLLLNLUCLA

Page last modified by Heinz-Dieter Nuhn, SSRL on April 25, 2003