X-ray Absorption Spectroscopy

Structure and Reactivity of a Mononuclear Non-Haem Iron(III)–Peroxo Complex

November 28, 2011

The life-sustaining element oxygen can’t do its job alone. Specialized enzymes, containing metallic elements including iron, cause O2to split into two separate oxygen atoms.  In this form, oxygen can react with other biological molecules. The precise mechanism of oxygen activation by iron complexes has long eluded researchers, in part because the reaction—which proceeds through multiple intermediate stages—happens in mere fractions of a second.

Manganese-II Oxidation: A Biotic and Abiotic Process

December 12, 2011

Manganese, one of the most abundant metals in soils and rocks, is important to the health of the environment: As it cycles between manganese-II and nanocrystalline manganese-III/IV oxides, it plays an important role in controlling the cycle and transport of soil nutrients and contaminants.  Yet because the process is kinetically hindered, manganese will not oxidize rapidly in air; manganese needs a catalyst, often bacteria, to spur the process into action.

Towards the Chemically Specific Structure of Amorphous Materials: Anomalous X-ray Scattering from a Molybdenum-Germanium Alloy

November 29, 2002

Attempting to determine and describe the atomic arrangements in an amorphous material is a daunting prospect. A considerable advance has been made in the anomalous X-ray scattering approach to determining these arrangements in materials containing two atomic species.

Plants with the Midas Touch: Formation of Gold Nanoparticles by Alfalfa Plants

July 31, 2002

In the well-known Greek legend the touch of King Midas would convert anything to metallic gold. Recently, a team working at SSRL lead by Professor Jorge Gardea-Torresdey from the University of Texas at El Paso have shown that ordinary alfalfa plants can accumulate very small particles (nanoparticles) of metallic gold (1). The best-known materials that contain nanoparticles of metallic gold are gold colloids. These lack the familiar metallic luster, but show bright colors which range from red, violet or blue, depending upon the size of the nanoparticles (2,3). 

Bacterial Sulfur Storage Globules

January 31, 2002

Sulfur is essential for all life, but it plays a particularly central role in the metabolism of many anaerobic microorganisms. Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for use when food is in short supply (Fig. 1). The chemical nature of the sulfur in these globules has been an enigma since they were first described as far back as 1887 (1); all known forms (or allotropes) of elemental sulfur are solid at room temperature, but globule sulfur has been described as "liquid", and it apparently has a low density – 1.3 compared to 2.1 for the common yellow allotrope α-sulfur.

Intercation of Toxic Metals with Complex BioFilm/Mineral/Solution Interfaces

November 30, 2001

Sorption reactions on particle surfaces can dramatically affect the speciation, cycling and bioavailability of essential micronutrients (i.e. PO43-, Cu, Zn etc.) and toxic metals and metalloids (i.e. Pb, Hg, Se, As) in soils and aquatic environments. Considerable attention has been focused on understanding metal sorption reactions at a molecular/mechanistic level and the effects of metal concentration, pH, ionic strength, and complexing ligands on the ways in which metal ions bind to the surfaces of common mineral phases such as Fe-, Mn- and Al-(hydr)oxides and clays. However, a significant fraction of mineral surfaces in natural environments are extensively colonized by microbial organisms, which can also be potent sorbents for metals due to the large number of reactive functional groups that decorate the cell walls and outer membranes of bacterial surfaces. 

Experimental Station 14-3

Beam line 14-3 is under development and is expected to begin commissioning in the spring of 2010. The microprobe beam line is a bending magnet side station and will use K-B optics with a virtual source to focus the x-ray beam to an estimated size of 2 x 2 microns. BL 14-3 will specialize in the energy range around the sulfur K-edge and have a He purged sample environment. In addition to fluorescence mapping of lower-Z elements, spectroscopy and spectroscopic imaging will also be able to be performed over an ideal energy range of 2 to 6 keV.

Experimental Station 11-2

Beam Line 11-2 is a high-flux XAS station dedicated to molecular biogeochemical and interface sciences. It is optimized for challenging XAS measurements on dilute or radioactive samples, single crystals, and interfaces. To support these experiments, Beam Line 11-2 is equipped with collimating and focusing optics, a "double double" Si(220) LN-cooled monochromator, and a 30-element solid state Ge detector array.

Experimental Station 10-2

The imaging station at BL 10-2 is used to perform rapid imaging on larger samples with larger beam sizes. The sample positioning stage has a total travel limit of 600 mm horizontally and 300 mm vertically. The beam size can be determined by pinhole apertures (50 to 250 microns) or glass capillary (~10 microns). Future upgrades may allow for the installation of a K-B mirror pair to attain beam sizes of ~2-5 microns. BL 10-2 uses a wiggler for the x-ray source and has x-ray fluxes approximately 10-50 times greater than BL 2-3.

Experimental Station 10-1

BL10-1 is primarily used for x-ray absorption and photoemission spectroscopies. The optics and control software can be run in continuous scanning mode. A few facility chambers, including cryogenic sample handling and detectors are available upon request.

Pages

Subscribe to RSS - X-ray Absorption Spectroscopy
Find Stanford Synchrotron Radiation Lightsource on TwitterFind Stanford Synchrotron Radiation Lightsource on YouTubeFind Stanford Synchrotron Radiation Lightsource on Flickr