SSRL Science Highlights Archive

Approximately 1,600 scientists visit SSRL annually to conduct experiments in broad disciplines including life sciences, materials, environmental science, and accelerator physics. Science highlights featured here and in our monthly newsletter, Headlines, increase the visibility of user science as well as the important contribution of SSRL in facilitating basic and applied scientific research. Many of these scientific highlights have been included in reports to funding agencies and have been picked up by other media. Users are strongly encouraged to contact us when exciting results are about to be published. We can work with users and the SLAC Office of Communication to develop the story and to communicate user research findings to a much broader audience. Visit SSRL Publications for a list of the hundreds of SSRL-related scientific papers published annually and to add your most recent publications to this collection.

While we continue to refine our science highlights content you may access older science summaries that date between 04/2001 to 06/2010 by visiting http://www-ssrl.slac.stanford.edu/science/sciencehighlights.html. We will be offering science summaries that date from 06/2012 to the present soon.

March 2006
Hongjun Liang, Daniel Harries, Gerard C. L. Wong
Schematic pictures

Gene therapy can potentially cure many hereditary and acquired diseases, such as cancer, hemophilia and cystic fibrosis, by delivering a healthy copy of a gene to the cells that need it. Researchers have been working on ways to deliver genes safely and effectively to the right locations. One promising approach is to use negatively charged lipids that reside in cell membranes of mammals. The idea is to pack a gene, made of DNA, into a lipid pocket, which then fuses with a cell membrane and empties the gene into the cell. The advantage of these anionic lipids (AL) is they do not evoke an immune response. The disadvantage is they do not attach well to DNA because both are negatively charged.

BL4-2
March 2006
Xueyong Zhu, Tobin J. Dickerson, Claude J. Rogers, Gunnar F. Kaufmann, Jenny M. Mee, Kathleen M. McKenzie, Kim D. Janda, Ian A. Wilson
Figure 1.

Cocaine abuse remains a major public health problem despite ongoing research aimed at developing therapies to counter its harmful effects. Immunopharmacotherapy is one proposed therapy which would block cocaine in the blood stream before it reaches the central nervous system. Cocaine-binding antibodies seem likely candidates for soaking up drugs in the blood stream, but their only binding abilities are not sufficient to withstand high concentrations of the drug. What is needed is a monoclonal antibody with high binding characteristics and sufficient catalytic ability to metabolize cocaine.

Macromolecular Crystallography
BL9-2
March 2006
Peter Kuhn, Raymond C. Stevens, Kumar Singh Saikatendu, Jeremiah S. Joseph, Vanitha Subramanian, Benjamin W. Neuman, Michael J. Buchmeier
SARS Genome

Severe acute respiratory syndrome (SARS) emerged as the first severe and readily transmissible new disease of the 21st century. The debilitating pneumonia-like disease is caused by coronavirus, which caused 916 deaths out of about 8,400 reported cases. Scientists from The Scripps Research Institute in California have embarked on an ambitious program to characterize the structure and function of all the proteins built or used by SARS. Taking advantage of advances in robotics and automation at Stanford Synchrotron Radiation Laboratory as well as other new tools, the scientists ultimately hope to rapidly characterize the complete protein sets of emerging disease organisms and then provide structure information to design inhibitors to stop the organisms.

Single wavelength anomalous diffraction (SAD)
BL1-5, BL11-1, BL11-3
February 2006
Mary Corbett, Yilin Hu, Aaron Fay, Markus Ribbe, Britt Hedman, Keith Hodgson
Figure 1.

SSRL and Stanford scientists, in collaboration with a team from UC Irvine, have gotten the first look into how the metal active center of an enzyme that is largely responsible for fertilizing plants is assembled. This enzyme, which is called nitrogenase, certain bacteria employ to turn nitrogen from the air into a form that plants can use for healthy growth. In contrast to the enzymatic reaction, manufacturing nitrogen fertilizer chemically requires extreme pressures and temperatures and thus huge amounts of energy.

X-ray Absorption Spectroscopy
BL9-3
January 2006
A. Nilsson, A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, KJ Cho
Figure 1.

Researchers at SSRL and Stanford have taken a step closer to hydrogen-run cars by adding hydrogen to tiny cylinders made entirely out of carbon. Recent experiments at SSRL and the Advanced Light Source in Berkeley have shown that carbon nanotubes, 50,000 times narrower than a human hair, are a promising material for storing hydrogen safely, efficiently and compactly. To attempt to store hydrogen, the researchers bombarded a film of carbon nanotubes with a hydrogen beam. Then they studied the film with different x-ray spectroscopy techniques to see if any hydrogen atoms had formed chemical bonds with the carbon.

X-ray absorption spectroscopy imaging
December 2005
T.-C. Weng, University of Michigan, J.E. Penner-Hahn, University of Michigan, J.S. Magyar, Northwestern University, H.A. Godwin, Northwestern University
Figure 1.

Research performed at SSRL has provided insight into why lead is so damaging to the healthy development of young children. Scientists from the University of Michigan and Northwestern University used x-ray absorption spectroscopy at SSRL to understand how lead can interfere with proteins that help transform DNA blueprints into working proteins that run the body.

X-ray Absorption Spectroscopy
December 2005
J.K. Yano, M.-H. Hsu, K.J. Griffin, C.D. Stout, E.F. Johnson
Figure 1.

Using x-ray diffraction data collected at SSRL, Scripps researchers Jason Yano, Eric F. Johnson, C. David Stout, and their colleagues have solved the structure of a type of human P450 enzyme called CYP2A6, which is the principal enzyme in the body that degrades nicotine.

X-ray diffraction
BL9-1, BL11-1
November 2005
Figure 1.

When a snowball melts, you can tell it has achieved a liquid state when the frigid water drips through your fingers. But if you could follow the melting process, driven by the heat of your hand, from its very first moments - the first trillionth of second, would you be able to point to the exact moment the snowflake crystals disorder into liquid H2O? That's the challenge facing researchers using the Sub-Picosecond Pulse Source (SPPS) to probe the activities of materials on ultrafast timescales. SPPS makes intense x-ray pulses lasting quadrillionths of a second (femtoseconds), enabling researchers to directly monitor the earliest atomic changes during melting with ultrafast x-ray diffraction.

X-ray diffraction
October 2005
Magnus Sandström, Farideh Jalilehvand, Emiliana Damian, Yvonne Fors, Ulrik Gelius, Mark Jones, Murielle Salomé
Figure 1.

Henry VIII's warship, the Mary Rose, wreaked havoc on the French navy for 34 years until she was wrecked in 1545. Salvaged from the sea in 1982, she now rests in the Mary Rose Museum in Portsmouth, England. Pieces of her helm recently traveled to SSRL and the ESRF in Grenoble, France, where intense x-rays pierced the wood to analyze the sulfur and iron within. Led by University of Stockholm Professor Magnus Sandström, researchers had studied another historical treasure, the Swedish warship Vasa, at SSRL in a similar way in 2001.

X-ray Absorption Spectroscopy
October 2005
Uri Raviv, Daniel J. Needleman, Youli Li, Herbert P. Miller, Leslie Wilson, Cyrus R. Safinya
Sketch 1: Lipid Protein

Microtubules, 25 nanometer scale hollow tubules, are critical components in a broad range of functions in eukaryotic cells -- from providing tracks for the transport of cargo to forming the spindle structure for chromosome segregation before cell division. They are used as nanometer scale tracks in neurons for the transport of neurotransmitter precursors and enzymes to synaptic junctions in nerve cell communication.

X-ray scattering
BL4-2

Pages

Subscribe to SSRL Science Highlights
Find Stanford Synchrotron Radiation Lightsource on TwitterFind Stanford Synchrotron Radiation Lightsource on YouTubeFind Stanford Synchrotron Radiation Lightsource on Flickr