5th Annual SSRL School on Synchrotron X-ray Scattering
June 2nd 2010

\textbf{Beam Line Optics at SSRL}

\textit{Bart Johnson}

\textit{SSRL Experiment Support Group}
Beam Line Optics at SSRL

- **Synchrotron Radiation Sources**
- **Beam Line Optical Elements**
- **Beam Stabilizing Feedback Systems**
- **Flux vs. Energy Resolution**
Generic Synchrotron Components

photon beam line

bending

e-beam focusing elements

vacuum chamber

rf-cavity

injection system

Insertion device beam line

Courtesy of Tom Rabedeau
Typical Beam Line Optical Concept

- **Your Sample**
- **Mono Entrance Slits**
 - Variable vertical aperture defines mono acceptance.

- **Monochromator**
 - Double crystal
 - Si(111) or Si(220)
 - LN or water cooled

- **Mirror**
 - Cylindrical or toroidal figure
 - Rhodium-coated silicon
 - Harmonic rejection, power filter, collimating or focusing

- **Mirror Slits**
 - Variable gap
 - Defines BL acceptance.

- **Source**

- ~12 meters

SSRL
X-Ray Beam Line Sources

Bending Magnets - a “sweeping searchlight”,
BLs 1, 2, 8, 14 $\varepsilon_c = 7.78$ keV

Wiggler - incoherent superposition of radiation from an array of magnet poles
BL6 $\varepsilon_c = 5.39$ keV, BL7 $\varepsilon_c = 12.2$ keV

Undulator
- quasi-monochromatic spectrum consisting of fundamental and higher harmonics
- intensity $\sim (N_{\text{poles}})^2$
- narrow horizontal emission cone

Bend Magnets & Wigglers
- continuous spectrum with half-power point “critical energy”

$\varepsilon_c(\text{keV}) = 0.665 B(T) E^2 (\text{GeV})$
- intensity $\sim N_{\text{poles}}$
- broad horizontal fan
Source Characteristics (bends/wigglers):

- **source size:**
 - typical ID - 700um x 70um fwhm
 - bend - 380um x 120um fwhm

- **angular divergence:**
 - horizontal divergence is defined by slits to 1-3milliradians
 - vertical divergence is energy dependent - typical x-ray divergence ~250urad fwhm

- **broad energy spectra**

- **stability** - ~20um horz x ~5um vert (rms)

- **polarization** – dominantly horizontal

- **Frequent Fill coming June 7, 2010**
X-ray optical elements:

- Focusing and Collimating Mirrors
- Monochromators
- Apertures
- Filters
- associated Mechanical Alignment Systems

engineered, designed, assembled and installed by SSRL.
Fabricated by specialized optics shops in the United States, Japan, Germany, France.....
Focusing Mirrors

BL11-1 1.0m Si flat, side-cooled m0 mirror

BL10-2 1.2m Si vertically and horizontally focusing cylindrical m0 mirror
BL 7-2 m0 Vertically Collimating/Focusing Mirror

1.2 m long, central 0.8 m with optical figure and cooling
X-ray Mirrors
Reflectivity vs. Angle

Rh coated mirror surface

Adjustable low-pass filter for harmonic rejection.
Mirrors are either polished or bent to obtain desired figure.

- **elliptical figure provides point to point focusing**
- **parabolic figure collimates beam from source point or focuses parallel beam to a point**

BL mirrors at SSRL fall into two classes:

- **flats bent to approximate an ellipse or parabola to provide one dimensional beam shaping** (eg., BL7-2 & BL11-3)
- **cylinders bent into a toroidal figure to provide two dimensional beam shaping** (eg., BL2-1)

Typical radii of curvature:

- \(R_{tangential} = 2-8 \text{ km} \)
- \(R_{sagittal} = 35-100 \text{ mm} \)
Select a narrow energy band pass from the broad spectrum synchrotron source; typical crystal mono energy resolution $\sim 1e^{-4}$ (or better)

above left - LN mono crystal mount plate
above right – side scattering mono
lower right – LN mono first crystal with cooling channel bundle
Features of a Double Crystal Monochromator:

• Exit beam is parallel to entrance beam.
• Exit beam is tunable to reduce harmonic content by pitching the second crystal with respect to the first by ~10 microradians.
• Exit beam height varies sinusoidal with energy. Consequently, hutch table or downstream optics need to compensate for beam motion.
• Roll misalignment between the first and second crystal results in beam horizontal motion with energy.
X-ray Crystal Monochromators:
Improving Energy Resolution

• employ higher index monochromator crystal (e.g., Si(111) >> Si(220))
• use a collimating mirror upstream of monochromator to reduce vertical angular spread (e.g., BL7-2 M0 mirror can be used to collimate the beam at the expense of vertical spot size)
• reduce horizontal angular acceptance if monochromator is preceded by toroidal focusing mirror (e.g., BL2-1)
• reduce monochromator vertical angular acceptance by reducing monochromator entrance slit gap.
• **Mirror Pitch Feedback**
 Compensates for floor and beam line support frame motion driven by diurnal temperature changes and tidal forces.

• **Mirror Cooling Water Temperature Feedback**
 0.6 degree C temperature change in mirror cooling water is enough to degrade image quality. Feedback system holds to +/- 0.1 degrees C
Mirror Pitch Feedback at SSRL

Concept

- error signal obtained from position sensitive detector located near beam focus
- error signal used to control piezo high voltage via PI algorithm
- piezo provides mirror fine pointing control with typical full range of motion +/-~30urad
Mirror Pitch Feedback
Detector Cross Section

- 50V

Bias Electrodes

Beryllium w/Ti Coating

Stainless Steel Entrance/Exit Aperture
3mm vertical x 8mm wide

I to V

Upper Blade “A”

I to V

Lower Blade “B”
Mirror Pitch Feedback
Detector Mechanical Model
Mirror Pitch Feedback
LabView Control Panel
Mirror Pitch Feedback in Action Today
BL2-1 m0 Mirror

82.7 microns/volt
6.50 microradians/volt
Mirror Pitch Feedback in day-to-day operation

- **BL12-2**
 Protein Crystallography- diurnal & foot-traffic motion.

- **BL2-1**
 2-Circle Diffractometer - 300um p-p diurnal motion.

- **BL7-2**
 6-Circle Diffractometer - 300um p-p diurnal motion.

- **BL4-2**
 SAS – 400um p-p diurnal motion.

- **BL6-2**
 Transmission X-Ray Microscope - “squirrelly” beam motion

- **BL10-2**
 XAS Fluorescence Imaging - keep 150um vertical fwhm beam centered in 50 pin hole.

Mirror Pitch Feedback Future:

- **VUV Beam Lines**
 In-vacuum MPF detector schemes currently in development, and implementation planned for November.
Mirror Cooling Water Temperature Feedback system developed by Valery Borzents of the Experiment Support Group
Beam Line Flux and Energy Calculator

Source:
- Energy (GeV): 3.0
- Current (mA): 100.0
- Beam line:
 - Beam center (mm): 0
 - Beam horiz accept (mm): 1.5

Calculated Flux:
- Photon energy (eV): 8980
- Flux (cps/0.1%bp): 6.36E+12

 (Wiggler/bend only!)

Filters:
- He (mm): 16000, 0.935
- Be (um): 546, 0.922
- N2 (mm): 0, 1.000
- C (um): 15, 0.990
- Al (um): 0
- Cu (um): 0
- Ar (mm): 0
- N2 (mm): 0
- Cu (um): 0
- Air (mm): 100, 0.921
- Total transmission thru filters: 7.85E-01

Si Monochromator:
- d (rlu): 1
- k (rlu): 1
- l (rlu): 1
- Bragg theta (deg): 12.7147
- Theta cor in (deg): 12.7147
- Theta cor exit (deg): 12.7147
- Temperature (K): 393

Vertical Acceptance:
- Lim. vert. aperture (mm): 3.500
- Vert. accept. (ur): 333.3
- Aperture z (mm): 10500.0
- Frac. accept.: 0.9124

Ion Chamber:
- Ion cham length (mm): 17
- Gas 1 (He, N2, Ar, Al): 1, 1.0000
- Gas 2 (He, N2, Ar, Al): 0
- Ion cham current (A): 1.00E-07
- Gas 1 abs length: 236316.8
- Gas 1 abs: 1675.96
- Gas 2 abs length: 71.37
- Gas 2 abs: 71.37
- Air abs length: 1207.5
- E/Ec: 1.2003
- Sig_y' (urad): 97.5840

Calculate Flux Corrected for Filters, Mono, & Accept.:
- 5.43E+11 cps ==> 5.43E+09 cps / mA
- Flux incident on ion chamber (from IC current): 2.41E+11 cps ==> 2.41E+09 cps / mA

Created by Tom Rabedeau and John Bagnasco of SRRL Beam Line Development Group

Copy of .xls file located on most beam line PC desktops or see me for a copy.
Your free copy here just for staying awake, otherwise order your free copy at

http://cxro.lbl.gov/xdb