Introduction to Synchrotron X-ray Scattering Techniques

Mike Toney, SSRL

1. Why do x-ray scattering?
2. Basics of an x-ray scattering experiment
3. Some examples
 - SAXS: porous films
 - Powder: Pd nanoparticles
 - Textured films: ZnO nanostructures
4. Summary
Why do SR X-ray scattering?

- Materials properties are caused or affected by their physical structure and morphology
- Improve your materials by understanding the structure.

- Phase identification & quantify
- Where are the atoms: Atomic or molecular arrangement, crystal & surface structure
- Strain, lattice parameters (unit cell size)
- Grain/crystallite size (diffraction)
- Pore/particle size (SAXS)
- Other defects & disorder (faults, positional disorder)
- Crystallite orientation or texture
SR Scattering Experiment

sample

monochromator
 • double crystal
 • Si(111) or Si(220)
 • LN or water cooled
 • selects wavelength

slits (horz or vert)
 • variable aperture
 • define beam shape and acceptance

M0 mirror
 • cylindrical or toroidal
 • Rhodium-coated silicon
 • harmonic rejection, power filter, collimating or focusing

beam

source

Area detector

Point detector

incident \(k \)

\(Q = k' - k \)

scattered \(2\theta \)

collect \(I(Q) \)

All you care about is \(Q \)
SR Scattering Experiment

All you care about is Q

At SSRL:
- Area detector: 11-3
- Point detectors: 2-1, 7-2, 10-2
- SAXS: 1-4
SR Scattering Experiment

<table>
<thead>
<tr>
<th>Beamline</th>
<th>2-1</th>
<th>7-2 & 10-2</th>
<th>11-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>Point</td>
<td>Point</td>
<td>Area</td>
</tr>
<tr>
<td>Advantages</td>
<td>High resolution</td>
<td>High resolution</td>
<td>Fast measurement</td>
</tr>
<tr>
<td></td>
<td>Accurate peak position and shape</td>
<td>Accurate peak position and shape</td>
<td>Collect (nearly) whole pattern</td>
</tr>
<tr>
<td></td>
<td>Weak peaks</td>
<td>Weak peaks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variable energy</td>
<td>Variable energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflectivity</td>
<td>4 degrees of motion</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Slow</td>
<td>Slow</td>
<td>Fixed wavelength</td>
</tr>
<tr>
<td></td>
<td>Only 2 axes of motion</td>
<td>Can be difficult to find textured peaks</td>
<td>Low resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complicated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peak shape and position inaccurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weak peaks difficult</td>
</tr>
<tr>
<td>Used for</td>
<td>Powders</td>
<td>Single crystals</td>
<td>Texture</td>
</tr>
<tr>
<td></td>
<td>Phase determination</td>
<td>Grazing-incidence</td>
<td>Real time experiments</td>
</tr>
<tr>
<td></td>
<td>Reflectivity</td>
<td>Anomalous diffraction</td>
<td>Polycrystalline, small grains (e.g. soils)</td>
</tr>
<tr>
<td></td>
<td>θ-2θ</td>
<td>Surface studies</td>
<td>Thin films</td>
</tr>
<tr>
<td></td>
<td>Anomalous diffraction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SR Scattering Experiment

Area detector (11-3)

Advantages
- Fast measurement
- Collect whole pattern

Disadvantages
- Fixed wavelength
- Low resolution
- Peak shape & position inaccurate
- Weak peaks difficult

Used for
- Texture (crystallite orientation)
- Real time experiments (electrochemistry, stress-strain)
- Polycrystalline, small grains (e.g. soils)
- Thin films

\[2\theta = \text{scattering angle} \]
\[Q = \left(\frac{4\pi}{\lambda}\right) \sin \theta \]
SR Scattering Experiment

Point detector (2-1)

Advantages
- High resolution
- Accurate peak position & shape
- Weak peaks
- Variable energy
- Reflectivity

Disadvantages
- Slow
- Only 2 degrees of motion (θ, 2θ)

Used for
- Powders
- Phase determination
- Reflectivity
- Anomalous diffraction
- θ-2θ measurements

\[Q = \left(\frac{4\pi}{\lambda}\right) \sin \theta \]

\[2\theta = \text{scattering angle} \]
SR Scattering Experiment

Point detector (7-2/10-2)

Advantages
- High resolution
- Accurate peak position & shape
- Weak peaks
- Variable energy
- 4 degrees of motion (θ, 2θ, χ, ϕ)

Disadvantages
- Slow
- Complicated
- Can be difficult to find peaks

Used for
- Single crystals
- Grazing-incidence
- Anomalous diffraction
- Thin films
- Surface studies

$2\theta = \text{scattering angle}$

$Q = (4\pi/\lambda) \sin \theta$
Types of scattering experiments

- Small Angle X-ray Scattering (SAXS)
 - probes structures 1-100 nm
- Powder Diffraction, including in-situ
 - random or isotropic; nanoparticles
 - poor crystalline order
- Thin Films: random, textured, epitaxial
 - wide variety
- Surface Scattering/monolayers
 - atomic structure at surface or interface
Lengths Accessed by Probes

USAXS SAXS XRD EXAFS

1 nm μm
Summary: SR Scattering

SR Scattering:

- Q is an important variable: measure $I(Q)$
- Choose Q to match length scale
- Variety of materials

What can we learn:

- Phase identification & quantify
- Where are the atoms: crystal & surface structure
- Strain, lattice parameters
- Grain/crystallite size
- Pore/particle size
- Other defects & disorder
- Crystallite orientation or texture

Iron metal
Fe oxide
Small Angle Scattering

\[Q = k' - k \]

\[|Q| = \frac{4\pi}{\lambda}\sin \theta \]

- Measure \(I(Q) \) with \(Q \sim 0.0001 - 1 \text{ Å}^{-1} \)
- Scattering from 1-100 nm density inhomogeneities
Small Angle Scattering

Scattering from density inhomogeneities with sizes 1-100 nm

- nanoparticles (catalysts, bio-oxides, geo-oxides)
- nanoporous materials
- co-polymers
- dendimers
- supramolecular assemblies
- micelles
- colloids
- metallic glasses
Small Angle Scattering

Hexagonal packed cylinders

Isolated particles or pores with diameter D

- Need large Q range: \(\frac{1}{D} \leq Q \leq \frac{10}{D} \)
Example 1: Nanoporous Films

Matrix: Methyl Silsesquioxane (MSSQ), CH$_3$SiO$_{1.5}$

Porogen (thermally labile polymer): copolymer poly(methyl methacrylate-co-dimethylaminoethyl methacrylate) or P(MMA-co-DMAEMA)

1. Spin coat MSSQ/Porogen solution

2. Heat to 450°C, at 5°C/min under argon

3. Cool to room temperature

Funded by NSF-ATP

IBM
Elbert Huang
Jonathan Hedstrom
Ho-Cheol Kim
Teddie Magbitang
Robert Miller
Willi Volksen

Argon

MSSQ crosslinks at 200°C
Porogen fully degrades at 400°C
Nanoporous Films: SAXS Results

Find:
- reasonably small pores (good)
- broad distribution of pore sizes (bad)
- size increases with loading => agglomeration (bad)

Goal: obtain representative real space picture (correct size scale and extent of interconnection)

Approximations:
- morphology is “disordered” or random with no preferred direction
- morphology described by cosine waves:
 - with random phase and direction
 - non-random distribution of wavelengths (from SAXS)

Summary: SAXS

- Isolated Particles/Pores (not ordered)
 ✓ Obtain average size & particle/pore size distribution (need large Q range)

- (More) Ordered Structures
 ✓ particle/pore spacing and morphology

- Dense Network of Pores/Particles
 ✓ Obtain representative morphology
 ✓ Good for interconnected & bicontinuous morphologies

John Pople, up next!
Example 2: Nanoparticles

Motivation:

- Pd absorbs hydrogen at an atomic level
- Clusters behave differently to bulk
- Pd clusters:
 - size dependence
 - surface/volume ratio

\[\text{Example 2: Nanoparticles} \]
Nanoparticles: X-ray diffraction

\[Q = k - k' \]

Reflection

Transmission

Point detector (2-1, 7-2)
Nanoparticles: X-ray diffraction

Summary: Nanoparticles

This work:
• Observe peaks corresponding to fcc Pd
• Lattice expansion upon addition of hydrogen
• Dependence on cluster size

Powder diffraction:
• Phase identification
• Structure determination
• Strain
• Crystallite size
• Defects
• In situ measurements
• Transmission and reflection geometries

Apurva Mehta, etc: this afternoon
Example 3: ZnO

Motivation:
• ZnO exhibits a wide variety of nanostructures
• Electrochemical processing has many advantages
• Experimental parameters determine morphology

How does crystallography affect the growth of the nanostructures?
Thin Film Diffraction

Area Detector

θ

$\alpha \sim 0.1-0.2$ deg

Beam line 11-3

incident

scattered

Detector
ZnO: experiments

Ex situ:
Summary:
• Texture increases with deposition time
• Nanostructures are oriented along 002 direction
• Films deposited at less negative electrochemical potentials have poorer epitaxy

Thin films and texture:
• Surfaces, interfaces
• Structure, strain
• Orientation
• Crystallite size in-plane and out-of-plane

MFT, Arturas Vailionis, this afternoon
Summary

• Typical SR x-ray scattering experiment & some examples: porous films, nanoparticles, textured films

• To be covered in this workshop:
 - SAXS
 - Powder
 - Poorly ordered
 - Films: random, textured, epitaxial
 - Monolayers
Bibliography

More Bibliography

- Structural data for thousands of minerals: database.iem.ac.ru/mincryst/
- Lawrence Berkeley: X-ray interactions with matter, data & calculations www-cxro.lbl.gov/optical_constants/
- International Centre for Diffraction Data - purveyors of the Powder Diffraction File (PDF) www.icdd.com