Thin Film Scattering: Epitaxial Layers
• Thin films. Epitaxial thin films
• What basic information we can obtain from x-ray diffraction
• Reciprocal space and epitaxial thin films
• Scan directions – reciprocal vs. real space scenarios
• Mismatch, strain, mosaicity, thickness
• How to choose right scans for your measurements
• Mosaicity vs. lateral correlation length
• SiGe(001) layers on Si(001) example
• Why we need channel analyzer
• What can we learn from reciprocal space maps
• SrRuO$_3$ and La$_{0.67}$Sr$_{0.33}$MnO$_3$ films example
• Summary
What is thin film/layer?

Material so thin that its characteristics are dominated primarily by two dimensional effects and are mostly different than its bulk properties
Source: semiconductorglossary.com

Material which dimension in the out-of-plane direction is much smaller than in the in-plane direction.

A thin layer of something on a surface
Source: encarta.msn.com
Epitaxial Layer

A single crystal layer that has been deposited or grown on a crystalline substrate having the same structural arrangement.
Source: photonics.com

A crystalline layer of a particular orientation on top of another crystal, where the orientation is determined by the underlying crystal.

Homoepitaxial layer
the layer and substrate are the same material and possess the same lattice parameters.

Heteroepitaxial layer
the layer material is different than the substrate and usually has different lattice parameters.
Thin films structural types

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect epitaxial</td>
<td>Single crystal in perfect registry with the substrate that is also perfect.</td>
</tr>
<tr>
<td>Nearly perfect epitaxial</td>
<td>Single crystal in nearly perfect registry with the substrate that is also nearly perfect.</td>
</tr>
<tr>
<td>Textured epitaxial</td>
<td>Layer orientation is close to registry with the substrate in both in-plane and out-of-plane directions. Layer consists of mosaic blocks.</td>
</tr>
<tr>
<td>Textured polycrystalline</td>
<td>Crystalline grains are preferentially oriented out-of-plane but random in-plane. Grain size distribution.</td>
</tr>
<tr>
<td>Perfect polycrystalline</td>
<td>Randomly oriented crystallites similar in size and shape.</td>
</tr>
<tr>
<td>Amorphous</td>
<td>Strong interatomic bonds but no long range order.</td>
</tr>
</tbody>
</table>
Thin films structural properties

- Mosaic spread
- Curvature
- Misorientation
- Relaxation
- Dislocation content
- Inhomogeneity
What we want to know about thin films?

- Crystalline state of the layers:
 - Epitaxial (coherent with the substrate, relaxed)
 - Polycrystalline (random orientation, preferred orientation)
 - Amorphous

- Crystalline quality

- Strain state (fully or partially strained, fully relaxed)

- Defect structure

- Chemical composition

- Thickness

- Surface and/or interface roughness
Overview of structural parameters that characterize various thin films

<table>
<thead>
<tr>
<th></th>
<th>Thickness</th>
<th>Composition</th>
<th>Relaxation</th>
<th>Distortion</th>
<th>Crystalline size</th>
<th>Orientation</th>
<th>Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect epitaxy</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Nearly perfect epitaxy</td>
<td>×</td>
<td>×</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Textured epitaxy</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Textured polycrystalline</td>
<td>×</td>
<td>×</td>
<td>?</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>Perfect polycrystalline</td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Amorphous</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tetragonal Distortion

Lattice mismatch between cubic lattice parameters:

\[
\frac{\Delta a}{a} = \frac{a_L^R - a_S}{a_S}
\]

Lattice mismatch induces lattice strain:

\[
\varepsilon_\perp = \varepsilon_{zz} = \frac{a_L^\perp - a_L^R}{a_L^R} = \frac{d_L^\perp - d_L^R}{d_L^R}
\]
Single crystal
Polycrystalline Random
Relaxed Layer

Cubic: $a_L > a_S$

Cubic
Strained Layer

Compressive strain

Tetragonal:

\[a_L^{II} = a_S \]
\[a_L^\perp > a_S \]

Tetragonal distortion

Cubic
Perfect Layers: Relaxed and Strained

Reciprocal Space

(ooo) (ooo)

Cubic

Tetragonal

$\alpha_L > \alpha_S$

Cubic
Reciprocal space – Ewald sphere

$$|OC| = \frac{1}{\lambda} \sin \theta = \frac{1}{2} |d^*_{hkl}| = \frac{1}{2d_{hkl}} \rightarrow \lambda = 2d_{hkl} \sin \theta$$

$$|OB| = d^*_{hkl}$$
Reciprocal space – Scattering vector

$$\frac{s - s_0}{\lambda} = \frac{2 \sin \theta}{\lambda} = d^*_{hkl} = \frac{1}{d_{hkl}}$$

$$\lambda = 2d_{hkl} \sin \theta$$

Reciprocal Lattice Point

Diffraeted beam

Incident beam

Reciprocal space – Scattering vector

Symmetrical Scan

Asymmetrical Scan

Relaxed Layer

Strained Layer

(o0l)

(hkl)

(oo0)

(hoo)

(o0l) scan

(oo0)

(hkl)

(oo0)

(hoo) scan

(oo0)

(-hkl)
Scan Directions

Symmetrical Scan
\(\theta - 2\theta \) scan

Asymmetrical Scan
\(\omega - 2\theta \) scan

\(\alpha = \theta - \omega \)
Scan Directions

Sample Surface
Scan Directions

Symmetrical $\omega - 2\theta$ scan

Asymmetrical $\omega - 2\theta$ scan

Sample Surface
Symmetrical Scan
Grazing Incidence Diffraction
Real RLP shapes

\[c_L > a_S \]

\[c_L < a_S \]

Finite thickness effect

L

S

Compressive strain

Tensile strain

d-spacing variation

Mosaicity
Mismatch

True lattice mismatch is: \[m = \frac{a_L^R - a_S}{a_S} \]

For cubic (001) oriented material the experimentally measured normal component of the mismatch:

\[m_\perp = \frac{a_\perp - a_S}{a_S} = \left(\frac{\Delta a}{a} \right)_\perp = \left(\frac{\Delta d}{d} \right) = \frac{\sin \theta_S - \sin(\theta_S + \Delta \theta)}{\sin(\theta_S + \Delta \theta)} \]

The experimental mismatch, \(m_\perp \), can be related to the mismatch through the equation:

\[m = \frac{a_L^R - a_S}{a_S} = \frac{1 - \nu}{1 + \nu} m_\perp \]

where \(\nu \) is Poisson ratio.
For Si, \(\nu = 0.28 \)

\[
\begin{align*}
\nu &\approx \frac{1}{3} \\
m &\approx \frac{m^*}{2}
\end{align*}
\]

The composition of the \(A_{1-x}B_x \) alloy can be calculated from Vegard’s law:

\[a_L^R(x) = (1 - x)a_A + x a_B \]

\[x = m \frac{a_A}{a_B - a_A} \]
Layer Thickness

Interference fringes observed in the scattering pattern, due to different optical paths of the x-rays, are related to the thickness of the layer:

\[
t = \frac{(n_1 - n_2) \lambda}{2(\sin \omega_1 - \sin \omega_2)}
\]

Substrate Layer Separation

<table>
<thead>
<tr>
<th>S-peak:</th>
<th>L-peak:</th>
<th>Separation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega(°) 34.5649</td>
<td>Omega(°) 33.9748</td>
<td>Omega(°) 0.59017</td>
</tr>
<tr>
<td>2Theta(°) 69.1298</td>
<td>2Theta(°) 67.9495</td>
<td>2Theta(°) 1.18034</td>
</tr>
</tbody>
</table>

Layer Thickness

Mean fringe period (°): 0.09368
Mean thickness (um): 0.113 ± 0.003

<table>
<thead>
<tr>
<th>2Theta/Omega (°)</th>
<th>Fringe Period (°)</th>
<th>Thickness (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.22698 - 66.32140</td>
<td>0.09442</td>
<td>0.111637</td>
</tr>
<tr>
<td>66.32140 - 66.41430</td>
<td>0.09290</td>
<td>0.113528</td>
</tr>
<tr>
<td>66.41430 - 66.50568</td>
<td>0.09138</td>
<td>0.115481</td>
</tr>
<tr>
<td>66.50568 - 66.59858</td>
<td>0.09290</td>
<td>0.113648</td>
</tr>
<tr>
<td>66.59858 - 66.69300</td>
<td>0.09442</td>
<td>0.111878</td>
</tr>
<tr>
<td>66.69300 - 66.78327</td>
<td>0.09027</td>
<td>0.117079</td>
</tr>
</tbody>
</table>
Partially Relaxed + Thin

Partially Relaxed + Mosaicity
Symmetrical scan

ω-2θ direction

Defined by receiving optics (e.g. slits)

Defined by incident optics – monochromator

Mosaicity

(oool)

S

L

(ooo)
Symmetrical Scan

ω direction

ω-2θ direction

(ool)

(ooo)

d-spacing variation

mosaicity

receiving slit

analyzer crystal

analyzer crystal

receiving slit
Triple axis diffractometry

Ge content: 50% 40% 30% 20% 10%

Open detector

Triple axis

[Graphs and diagrams showing data and analysis related to Ge content and triple axis diffractometry]
Symmetrical Scan

Asymmetrical Scan

ω-scan

ω-2θ scan

h-scan

l-scan

(ool)

(hkl)

(ooo)

(hoo)

(ool)

(hkl)

(ooo)

(hoo)
Relaxed SiGe on Si(001)

Shape of the RLP might provide much more information
Relaxed SiGe on Si(001)
ω-scan

ω-2θ scan

(004)

(113)
Relaxation

The relaxation is defined as:

$$R = \frac{a_L - a_S}{a_L - a_S} \times 100$$

To separate the layer tilt from the true splitting we can make grazing incidence and grazing exit measurements:

- The effect of tilt on the peak splitting is reversed if the specimen is rotated by 180° about its surface normal.
- The splitting due to mismatch will not be affected by such rotation

$$\Delta \theta_{gi} = \Delta \theta + \Delta \varphi \quad - \quad \text{grazing incidence}$$
$$\Delta \theta_{ge} = \Delta \theta - \Delta \varphi \quad - \quad \text{grazing exit}$$
Analysis of Laterally Inhomogeneous Layers

The Mosaic Spread and Lateral Correlation Length functionality derives information from the shape of a layer peak in a diffraction space map recorded using an asymmetrical reflection

\[
L_3 = \sqrt{\Delta q_x^2 + \Delta q_z^2}
\]

and

\[
\varphi = \frac{1}{\tan \left(\frac{q_x}{q_z} \right)}
\]

\[
\xi = \frac{1}{\tan \left(\frac{\Delta q_x}{\Delta q_z} \right)}
\]

\[
\frac{L_1}{L_2} = -\frac{\cos \xi}{\cos (\varphi + \xi)}
\]

\[
\frac{L_3}{L_2} = -\frac{\sin \varphi}{\cos \xi}
\]

Lateral correlation length \(= \frac{1}{L_1} \)

Microscopic tilt \(= \frac{L_2}{\sqrt{q_x^2 + q_z^2}} \)
Superlattices and Multilayers

Substrate

\[\Lambda \]

\[t \]

\[d_{hkl} \]
Superlattices and Multilayers
Structure of SrRuO₃

- **Orthorhombic**:
 - $a = 5.586\ \text{Å}$
 - $b = 5.555\ \text{Å}$
 - $c = 7.865\ \text{Å}$
 - Temperature range: 275-550 °C

- **Tetragonal**:
 - $a = 5.578\ \text{Å}$
 - $c = 7.908\ \text{Å}$
 - Temperature range: 510-702 °C

- **Cubic**:
 - $a = 3.956\ \text{Å}$
Samples:

SrRuO_3 on SrTiO$_3$ and DyScO$_3$

$\text{La}_{0.67}\text{Sr}_{0.33}\text{MnO}_3$ on NdGaO$_3$, LSAT, SrTiO$_3$ and DyScO$_3$

Pseudo-cubic lattice parameters:
Finite thickness fringes around the Bragg peak indicate very good structural quality throughout the film.
X-ray diffraction scan types for [110] growth

Q scan

ω – 2θ scan

Reciprocal Space Map

Orthorhombic SrRuO$_3$

Tetragonal SrRuO$_3$

(0 0 2) SrTiO$_3$

(2 0 4) SrRuO$_3$

(6 2 0)

(4 4 -4)
Compressive Stress \rightarrow Unit cell is orthorhombic

$a \neq b$
Tensile Stress

Unit cell is tetragonal

\[a = b \]
Twinning in SrRuO$_3$/SrTiO$_3$
High-Resolution Reciprocal Area Mapping

Orthorhombic to Tetragonal Transition

Orthorhombic SrRuO$_3$
O–T Structural Transition, (620) & (260) reflections

Transition Orthorhombic to Tetragonal ~ 350 °C

O – T Structural Transition, (221) reflection

Transition Orthorhombic to Tetragonal ~ 310 °C

<table>
<thead>
<tr>
<th>(221) Peak</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthorhombic</td>
<td>Present</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Literature: 510-702 °C

\[\gamma \text{ angle accommodates the stress along [1-10]} \]

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(a) (Å)</th>
<th>(b) (Å)</th>
<th>(ab) (Å)</th>
<th>(c) (Å)</th>
<th>Layer</th>
<th>(a) (Å)</th>
<th>(b) (Å)</th>
<th>(ab) (Å)</th>
<th>(c) (Å)</th>
<th>(\gamma) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdGaO(_3)</td>
<td>5.428</td>
<td>5.498</td>
<td>7.726</td>
<td>7.708</td>
<td>LSMO/NGO</td>
<td>5.477</td>
<td>5.513</td>
<td>7.725</td>
<td>7.707</td>
<td>89.32</td>
</tr>
<tr>
<td>LSAT</td>
<td>5.476</td>
<td>5.476</td>
<td>7.744</td>
<td>7.740</td>
<td>LSMO/LSAT</td>
<td>5.471</td>
<td>5.507</td>
<td>7.744</td>
<td>7.740</td>
<td>89.72</td>
</tr>
<tr>
<td>SrTiO(_3)</td>
<td>3.905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DyScO(_3)</td>
<td>5.444</td>
<td>5.721</td>
<td>7.897</td>
<td>7.904</td>
<td>LSMO/DSO</td>
<td>5.478</td>
<td>5.483</td>
<td>7.895</td>
<td>7.902</td>
<td>92.16</td>
</tr>
<tr>
<td>LSMO (O)</td>
<td>5.488</td>
<td>5.524</td>
<td>7.762</td>
<td>7.787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdGaO(_3)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LSAT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SrTiO(_3)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DyScO(_3)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Summary

- Reciprocal space for epitaxial thin films is very rich.

- Shape and positions of reciprocal lattice points with respect to the substrate reveal information about:
 - Mismatch
 - Strain state
 - Relaxation
 - Mosaicity
 - Composition
 - Thickness

- Diffractometer instrumental resolution has to be understood before measurements are performed.
Polycrystalline
Preferred orientation
Single crystal
Polycrystalline